Bayesian parameter estimation using Gaussian states and measurements

نویسندگان

چکیده

Bayesian analysis is a framework for parameter estimation that applies even in uncertainty regimes where the commonly used local (frequentist) based on Cram\'er-Rao bound not well defined. In particular, it when no initial information about value available, e.g., few measurements are performed. Here, we consider three paradigmatic schemes continuous-variable quantum metrology (estimation of displacements, phases, and squeezing strengths) analyse them from perspective. For each these scenarios, investigate precision achievable with single-mode Gaussian states under homodyne heterodyne detection. This allows us to identify strategies combine good performance potential straightforward experimental realization terms measurements. Our results provide practical solutions reaching uncertainties techniques apply, thus bridging gap asymptotically optimal can be employed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

bayesian estimation of shift point in shape parameter of inverse gaussian distribution under different loss functions

in this paper, a bayesian approach is proposed for shift point detection in an inverse gaussian distribution. in this study, the mean parameter of inverse gaussian distribution is assumed to be constant and shift points in shape parameter is considered. first the posterior distribution of shape parameter is obtained. then the bayes estimators are derived under a class of priors and using variou...

متن کامل

Implicit parameter estimation for conditional Gaussian Bayesian networks

The Bayesian estimation of the conditional Gaussian parameter needs to define several a priori parameters. The proposed approach is free from this definition of priors. We use the Implicit estimation method for learning from observations without a prior knowledge. We illustrate the interest of such an estimation method by giving first the Bayesian Expectation A Posteriori estimator for conditio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quantum science and technology

سال: 2021

ISSN: ['2364-9054', '2364-9062']

DOI: https://doi.org/10.1088/2058-9565/abd83d